jueves, 28 de noviembre de 2013

Citoesqueleto.

CITOESQUELETO


El citoesqueleto es propio de las células eucarióticas. Es una estructura tridimensional dinámica que se extiende a través del citoplasma. Por lo tanto la idea de que el citoplasma de la célula es una masa amorfa y gelatinosa es equivocada.

Esta matriz fibrosa de proteínas se extiende por el citoplasma entre el núcleo y la cara interna de la membrana plasmática, ayudando a definir la forma de la célula e interviniendo en la locomoción y división celular. Es decir que el citoesqueleto no sólo da estabilidad a la célula como un esqueleto, sino que es también como el músculo interviene en el movimiento celular. Por lo tanto podríamos llamarlo también “citomusculatura”. Podemos agregar que el citoesqueleto condiciona el movimiento de las organelas del interior de la célula y tiene gran importancia metabólica, dando un andamiaje a los procesos moleculares que se realizan en el citoplasma.

El citoesqueleto es característico de las células eucariontes ya que ESTA AUSENTE EN LOS PROCARIONTES. Por lo que podría ser un factor esencial en la evolución de los eucariotas De esta forma podemos enunciar las siguientes funciones del citoesqueleto:

Estabilidad celular y forma celular
 Locomoción celular
 División celular
 Movimiento de los orgánulos internos
 Regulación metabólica


Microfilamentos
Son las fibras más delgadas de 3-6 nm (nanómetros=milmillonésimas de metro= 10-9), están formados por la proteína actina. La actina es una proteína con funciones contráctiles, es también la proteína celular más abundante. La asociación de estos microfilamentos de actina con la proteína miosina es la responsable de la contracción muscular. Los microfilamentos también pueden llevar a cabo los movimientos celulares, incluyendo desplazamiento, contracción y citiocinesis.

Microtúbulos
Los microtúbulos son tubos cilíndricos de 20-25 nm de diámetro. Están compuestos de subunidades de la proteína tubulina , estas subunidades se llaman alfa y beta. Los microtúbulos actúan como un andamio para determinar la forma celular, y proveen un conjunto de “pistas” para que se muevan las organelas y vesículas. Los microtúbulos también forman las fibras del huso para separar los cromosomas durante la mitosis y la meiosis. Cuando se disponen en forma geométrica dentro de cilios y flagelos, son usados para la locomoción (autopropulsión) o para mover líquido circundante o partículas (motilidad).

Filamentos intermedios
Los filamentos intermedios tienen 10 nm de diámetro y proveen fuerza de tensión (resistencia mecánica) a la célula. Según el tipo celular varían sus proteínas constitutivas. Podemos decir que existen seis tipos de filamentos intermedios:
1)     Neurofilamentos (en la mayoría de las neuronas).
2)     Filamentos de desmina, en el músculo.
3   Filamentos gliales, en las células del mismo nombre , que sirven de soporte en el cerebro, médula espinal y sistema nervioso periférico.
4)   Filamentos de vimentina en células del tejido conjuntivo y en los vasos sanguíneos.
5)  Queratinas epiteliales, (o filamentos de queratina o también llamados tonofilamentos), en células epiteliales.
6)  Laminofilamentos, forman la lámina nuclear, una delgada malla de filamentos intermedios sobre la superficie interna de la envoltura nuclear. Son los únicos que no se encuentran en el citoplasma.
A diferencia de los microfilamentos y microtúbulos, los filamentos intermedios al agruparse pierden polaridad, por lo tanto no presentan extremo + y extremo.







MATRIZ EXTRACELULAR

Bajo el nombre de matriz extracelular (MEC) se agrupan los elementos intercelulares presentes en los organismos pluricelulares. La composición de la MEC es única para cada tipo de tejido.
La MEC es un medio dinámico que juega un rol central en la regulación de las funciones celulares durante la remodelación y el crecimiento celular normal y patológico, como en el desarrollo embrionario y toda una serie de procesos que acontecen en el organismo adulto por ejemplo, la coagulación sanguínea, la curación de heridas, la inflamación, la reparación de tejidos dañados, y la erradicación de infecciones. Paradójicamente, la adhesividad a la MEC puede facilitar también, la aparición de artritis reumatoide, ataques cardíacos, los accidentes cerebro vasculares (ACV), la invasión tumoral y la metástasis.

Las células del cuerpo se mantienen pegadas unas a otras y a un material cohesivo extracelular (la MEC), que las circunda. Esta cohesión es esencial para la supervivencia, ya que mantiene unidos a los tejidos. Las células normales no logran sobrevivir si no están adheridas a algún tipo de sustrato o entre ellas.
Los componentes de la MEC pueden clasificarse en fluidos y fibrosos. Los componentes fluidos son los glicosaminglicanos (polisacárido) y proteoglicanos (glicoproteína). Por otro lado, los componentes fibrosos se dividen en proteínas estructurales (colágenos) y proteínas adhesivas (fibronectina, laminina).

Componentes Fluidos

La MEC posee glicosaminoglicanos, un heteropolisacárido que se hallan asociados entre sí o a glicoproteínas llamadas proteoglicanos.

Los glicosaminoglicanos y los proteoglicanos se asocian entre sí formando agregados moleculares de gran tamaño. Estos agregados tienen un papel estructural debido a que presentan excelente resistencia mecánica a los golpes debido a sus propiedades viscoso elásticas.

Todos los glicosaminoglicanos, son moléculas ácidas con numerosas cargas negativas. Además, todos los glicosaminoglicanos, excepto el ácido hialurónico, poseen grupos sulfatos (también un grupo ácido). Por lo tanto podemos decir que el carácter ácido de los proteoglicanos y los glicosaminoglicanos, los conduce a fijar cationes (Na+, K+), en consecuencia constituyen una reserva de estos. Por otra parte los cationes están rodeados de agua, esto aumenta el volumen (turgencia) de la MEC. Debido a que los proteoglicanos retienen agua, son directamente responsables del grado de hidratación de la matriz extracelular (ver otros polisacáridos en Composición química de los seres vivos).

CITOSOL O MATRIZ CITOPLASMÁTICA

El citosol, hialoplasma o matriz citoplasmática, consiste fundamentalmente en un sistema coloidal con grandes biomoléculas como lo son las proteínas, los polisacáridos y los ácidos nucleicos.
Sin embargo no debemos olvidar que también es una solución acuosa que tiene disueltos iones orgánicos e inorgánicos y pequeñas moléculas como monosacáridos, aminoácidos, pequeños ácidos orgánicos, etc.
En esta matriz tienen lugar muchísimos procesos metabólicos, por tal motivo entre las biomoléculas encontramos muchas enzimas, como las que participan en el proceso de glucólisis o el de síntesis de las proteínas. Para éste último, son imprescindibles los ribosomas, organoides también presentes en el citosol de todas las células y en el estroma o matriz de cloroplastos y mitocondrias.
En resumen podemos asegurar que el citosol no debe ser considerada una matriz amorfa y que además contiene elementos muy variados, la mayor parte de ellos importantes para el mantenimiento de la vida.

Ribosomas
Como ya lo indicáramos estos organoides están presentes en todos los tipos celulares y su estructura será descripta oportunamente.
Debemos señalar que, con excepción de algunas proteínas mitocondriales que se sintetizan en los ribosomas de la matriz mitocondrial, todas las proteínas se sintetizan en el citoplasma, y en el proceso intervienen siempre los ribosomas. Sin embargo, a pesar de la ubicación del proceso, no todas las proteínas permanecen en el citoplasma.
El tránsito de proteínas desde el citosol hasta los diferentes destinos, requiere como ya hemos mencionado de un sistema de señalización preciso, que asegure la llegada de las proteínas al lugar adecuado. Estas señales se encuentran en la mismas proteínas. Como ejemplo podemos mencionar al péptido señal y las señales de anclaje (ver Sistema de endomembranas). Obviamente las proteínas destinadas al citosol no necesitan señales.
Chaperonas

Las chaperonas asisten a las proteínas para su oportuno y adecuado plegamiento. Son proteínas que aumentan durante los “estres térmico” y en condiciones de estrés metabólico, siendo estas situaciones que producen la desnaturalización de un gran número de proteínas. Las chaperonas ayudan a la renaturalización de las proteínas afectadas. Como ejemplo mencionaremos a las chaperonas HSP60 y HSP70 (por las iniciles de Heath Shock Protein). Ambas chaperonas consumen energía para realizar su tarea.


Referencias.
Silvia Márquez – Lionel Valenzuela Pérez – Sergio D. Ifrán – Maria Elena Pinto. Citoesqueleto. Articulo publicado en: http://genomasur.com/lecturas/Guia06.htm

Lisosomas y Peroxisomas.

Formación de lisosomas primarios

Los lisosomas primarios son organoides derivados del sistema de endomembranas. Cada lisosoma primario es una vesícula que brota del aparato de Golgi, con un contenido de enzimas hidrolíticas (hidrolasas). Las hidrolasas son sintetizadas en el REG y viajan hasta el aparato de Golgi por transporte vesicular. Allí sufren una glicosilación terminal de la cual resultan con cadenas glucídicas ricas en manosa-6-fosfato (manosa 6-P). La manosa 6-P es el marcador molecular, la “estampilla” que dirige a las enzimas hacia la ruta de los lisosomas. Se ha estudiado una enfermedad en la cual las hidrolasas no llevan su marcador; las membranas del aparato de Golgi no las reconocen como tales y las empacan en vesículas de secreción para ser exocitadas. Quienes padecen esta enfermedad acumulan hidrolasas en el medio extracelular, mientras sus células carecen de ellas.

Lisosomas y digestión: heterofagia y autofagia

Los lisosomas primarios contienen una variedad de enzimas hidrolíticas capaces de degradar casi todas las 
moléculas orgánicas. Estas hidrolasas se ponen en contacto con sus sustratos cuando los lisosomas primarios se fusionan con otras vesículas. El producto de la fusión es un lisosoma secundario. Por lo tanto, la digestión de moléculas orgánicas se lleva a cabo en los lisosomas secundarios, ya que éstos contienen a la vez los sustratos y las enzimas capaces de degradarlos.
Existen diversas formas de lisosomas secundarios, según el origen de la vesícula que se fusiona con el lisosoma primario:

Fagolisosoma: se origina de la fusión del lisosoma primario con una vesícula procedente de la fagocitosis. Se encuentran, por ejemplo, en los glóbulos blancos, capaces de fagocitar partículas extrañas que luego son digeridas en estos cuerpos.

Endosoma tardío: surge al unirse los lisosomas primarios con materiales provenientes de los endosomas tempranos. Los endosomas tempranos contienen macromoléculas que ingresan por los mecanismos de endocitosis inespecífica y endocitosis mediada por receptor. Este último es utilizado por las células para incorporar, por ejemplo, las lipoproteínas de baja densidad o LDL.
Fig. 5.14- Endosoma temprano y tardío

Endosoma temprano y tardío
Autofagolisosoma: es el producto de la fusión entre un lisosoma primario y una vacuola autofágica. Algunos organoides citoplasmáticos son englobados en vacuolas, con membranas provistas por las cisternas del RE, para luego ser reciclados cuando estas vacuolas autofágicas se unen con los lisosomas primarios.
La digestión que tiene lugar en los lisosomas secundarios, ya se trate de una heterofagia- hidrólisis de sustancias de origen exógeno- o de una autofagia –degradación de componentes celulares- da origen a moléculas más sencillas que atraviesan la membrana lisosomal, es decir son absorbidas por el citosol para su posterior asimilación.

Lo que queda del lisosoma secundario después de la absorción es un cuerpo residual. Los cuerpos residuales contienen desechos no digeribles que en algunos casos se exocitan y en otros no, acumulándose en el citosol a medida que la célula envejece. Un ejemplo de cuerpos residuales son los gránulos de lipofuscina que se observan en células de larga vida, como las neuronas.

La activación de las hidrolasas requiere un medio más ácido que el citosol, de pH 5, que se logra por la acción de una bomba de protones situada en la membrana lisosomal. Por otra parte, la membrana de los lisosomas es impermeable a las enzimas y resistente a la acción de éstas. Ambos hechos protegen normalmente a la célula de una batería enzimática que podría degradarla. Existen, sin embargo, algunos procesos patológicos, como la artritis reumatoidea, que causan la destrucción de las membranas lisosomales, con la consecuente liberación de las enzimas y la lisis celular. En otros casos, la liberación de las hidrolasas cumple un papel fisiológico, permitiendo la reabsorción de estructuras que ya no son útiles, por ejemplo la cola de los renacuajos durante la metamorfosis.
Fig. 5.15- Autofagia y Heterofagia  
Fig. 5.15- Autofagia y Heterofagia

PEROXISOMAS

Los peroxisomas, organoides presentes en todas las células eucariontes, son vesículas ovoideas de aproximadamente 0,5 mm, que al igual que los lisosomas están rodeadas por una membrana simple y contienen enzimas en su interior. Esta quizá sea la única similitud, pues se originan al igual que las mitocondrias por un proceso de fisión binaria, en este caso de peroxisomas preexistentes. Las enzimas que contienen en su matriz se incorporan desde el citosol, siendo sintetizadas en ribosomas libres. Según el tipo de enzimas que posean, existen muchos tipos de peroxisomas.

La principal enzima de los peroxisomas es la catalasa, que descompone el peróxido de hidrógeno producido en el peroxisoma o el originado en otras localizaciones, como el citosol, RE y las mitocondrias. La actividad de la catalasa es la única común a todos los tipos de peroxisomas.

En el peroxisoma, se reduce el oxígeno molecular en dos pasos. En el primero una oxidasa elimina los electrones de varios sustratos, como aminoácidos o ácido úrico. En el segundo, la catalasa, convierte el peróxido de hidrógeno, formado en el primer paso en agua.

La catalasa también participa en la neutralización de los aniones superóxido, O2- (radicales libres). Estos radicales son primero eliminados con formación de H2O2 por la superóxido dismutasa, y luego la catalasa de los peroxisomas convierte al H2O2 en H2O y O2.

La catalasa también neutraliza con consumo de H2O2, sustancias tóxicas, como fenoles, formaldehído y el etanol de las bebidas alcohólicas, por eso son más numerosos en el tejido hepático y renal.
Contiene además diferentes oxidasas, como la D-aminooxidasa, urato oxidasa y las responsables de la b-oxidación de los ácidos grasos (este proceso tiene lugar principalmente en la mitocondria). Todas estas enzimas oxidan sus sustratos produciendo energía térmica en lugar de ATP.

En las células vegetales, encontramos glioxisomas, que son peroxisomas especializados en el metabolismo de los triacilgliceridos.
Las enzimas de los glioxisomas, transforman los ácidos grasos de las semillas en hidratos de carbono por la vía del glioxilato.

Los glioxisomas, también juegan un papel central en la fotorrespiración (se denomina así dicho proceso por requerir luz y O2 y liberar CO2), que tiene lugar en las hojas de las plantas verdes en los días de calor intenso y baja humedad ambiente.

En los glioxisomas, se cataliza la oxidación del glicocolato a H2O2 y glioxilato con consumo de oxígeno. Luego el H2O2 formado es descompuesto y el glioxilato es transformado en glicina, la cual ingresa al ciclo de Krebs.


Referencias. Viviana Sabatino – Andrea Lassalle – Silvia Márquez. Sistema de Endomembranas. Articulo Publicado en: http://genomasur.com/lecturas/Guia05.htm

Aparato de Golgi.

APARATO DE GOLGI

El aparato de Golgi es la estación distribuidora final del sistema. Las macromoléculas sintetizadas en REL y REG llegan a él mediante transporte vesicular y son recibidas en la cara convexa del aparato o cara de recepción, donde se encuentra una zona de transición con el RE, la red cis. Desde allí, por el mismo mecanismo, son enviadas a la cisterna cis, luego a la medial, y por último al compartimento trans del complejo de Golgi, que se corresponde con su cara cóncava. A partir de otra zona de transición, la red del trans Golgi, brotan las vesículas que contienen los productos definitivos.
El complejo de Golgi no se limita al transporte de las sustancias recibidas. En este sector, por el contrario, se da la forma final a las moléculas que ingresan. En el aparato de Golgi tienen lugar las siguientes reacciones:
Glicosilación terminal. Es la modificación secuencial, por remoción y adición de monosacáridos, de las glucoproteínas sintetizadas en el REG. También se adicionan nuevos bloques oligosacarídicos construidos por completo en el aparato de Golgi, proceso denominado O-glicosilación (el enlace entre el glúcido y el resto de aminoácido es unión O-glicosídica).
Síntesis de heteropolisacáridos. Los heteropolisacáridos constituyentes de los glicosaminoglicanos (GAG) se sintetizan en el aparato de Golgi y se unen a las proteínas provenientes del REG, ensamblando moléculas complejas como el ácido hialurónico o el condroitín-sulfato destinados a la matriz extracelular de las células animales. En las células vegetales, el aparato de Golgi sintetiza polisacáridos de la pared celular, por ejemplo hemicelulosas y pectinas.
Síntesis de glucolípidos. Se adiciona la porción glucídica a la ceramida sintetizada en el REL.

Secreción
Las vesículas que brotan de la cara trans portan los productos acabados destinados al medio extracelular. La fusión de dichas vesículas con la membrana plasmática –exocitosis- da como resultado la secreción o exportación de diversas sustancias: enzimas, hormonas, moléculas de la matriz extracelular o de la pared celular, anticuerpos y otras, según el tipo celular.
Hay dos rutas secretorias: la continua o constitutiva y la discontinua o regulada.
La secreción continua o constitutiva está presente en todos los tipos celulares. Las vesículas que siguen esta ruta se exocitan en forma continua, a medida que brotan del aparato de Golgi. Por ejemplo, se secretan por esta vía las moléculas que se incorporan a la matriz extracelular.


Fig. 5.13- Secreción
La secreción regulada, en cambio, es propia de células secretoras especializadas. En estos casos, las vesículas se acumulan en el polo secretor de la célula, como gránulos de secreción, y la exocitosis se dispara sólo ante señales muy específicas. Por ejemplo, las células b de los islotes de Langerhans (en el páncreas), contiene gránulos de insulina que son exocitados en respuesta a una elevación de la glucemia. La secreción regulada requiere también un aumento de la concentración de calcio citosólico.

Viviana Sabatino – Andrea Lassalle – Silvia Márquez. Sistema de Endomembranas. Articulo Publicado en: http://genomasur.com/lecturas/Guia05.htm


Retículo endoplasmático granular o rugoso (REG o RER).


Es un grupo de cisternas aplanadas que se conectan entre sí mediante túbulos. Presente en todos los tipos celulares, se halla especialmente desarrollado en las células secretoras de proteínas. El REG ofrece una cara citosólica tachonada de ribosomas, a los que debe su aspecto rugoso. Los ribosomas se unen a las membranas del REG por su subunidad mayor, mediante receptores específicos, las proteínas integrales de las membranas cisternales conocidas como riboforinas.




FUNCIONES DEL RETÍCULO ENDOPLASMÁTICO GRANULAR




Síntesis de proteínas. Todas las proteínas sintetizadas en la célula (excepto las codificadas por ADN de mitocondria y cloroplasto) son iniciadas por ribosomas libres del citosol. Muchas de ellas, las proteínas nucleares, las citosólicas y las que están destinadas a cloroplastos, mitocondrias o peroxisomas, concluyen su síntesis en dichos ribosomas para luego dirigirse, por el citosol, hacia sus compartimentos diana. Otras, en cambio, como las proteínas integrales de membrana, las de secreción y las enzimas lisosomales, terminan su síntesis en el REG.

Las proteínas que carecen de péptido señal no son reconocidas por la PRS; por este motivo no se dirigen hacia el sistema de endomembranas y su síntesis se completa en el citosol. Muchas de ellas atraviesan otras membranas con posterioridad (postraslación) para alcanzar su localización definitiva. Se han encontrado otras secuencias aminoacídicas, distintas del péptido señal, que actúan como marcas para dirigirlas a sus respectivos destinos.

Las proteínas sintetizadas en el REG pueden dividirse en dos grandes grupos: membranares y luminales o solubles. Las membranares permanecen incluidas en la membrana, en algunos casos ligadas a ella mediante el péptido señal; en otras, secuencias de aminoácidos internas a la cadena funcionan como péptidos de anclaje, deteniendo la translocación de la proteína por el canal. Según la cantidad de secuencias de anclaje que presentan, hay proteínas de paso único o proteínas multipaso. Las proteínas intrínsecas insertas en la membrana a nivel del REG se retienen como componentes de este organoide o son transportadas en vesículas, formando parte del “envase”, hasta incorporarse a otras membranas del sistema o a la propia membrana plasmática.

Las proteínas solubles no conservan el péptido señal ni poseen otros péptidos de anclaje. Cuando el péptido señal es escindido de la cadena (en este corte actúa una peptidasa señal ubicada en la cara luminal de las cisternas), ésta pierde contacto con la membrana y se vuelca por completo al lumen. Si las proteínas solubles no son residentes del REG, entonces siguen su ruta, en este caso como contenido de las vesículas transportadoras. Podemos citar en este grupo a las proteínas de secreción y a las hidrolasas lisosomales.   
Glicosilación. La mayor parte de las proteínas sintetizadas en el REG incorporan cadenas glucídicas a su paso por el mismo. La presencia en la cadena polipeptídica de la secuencia de aminoácidos asparagina–x-serina o asparagina–x–treonina (x es otro aminoácido cualquiera), señal de glicosilación, marca el sitio donde se unirá el glúcido. Todas las glucoproteínas sintetizadas en el REG reciben el mismo oligosacárido: una cadena ramificada de doce unidades de monosacárido.

Retículo endoplasmático agranular o liso (REA o REL).



Su aspecto es más tubular y carece de ribosomas. Es poco conspicuo en la mayoría de las células, pero alcanza un notable desarrollo en las células secretoras de hormonas esteroides.
  
Síntesis de lípidos. En las membranas del REL se sitúan las enzimas responsables de la síntesis de la mayor parte de los lípidos celulares: triglicéridos, fosfoglicéridos, ceramidas y esteroides. Los precursores para la síntesis provienen del citosol, hacia el cual se orientan los sitios activos de las respectivas enzimas. Por lo tanto, los lípidos recién sintetizados quedan incorporados en la monocapa citosólica del REL. Sin embargo, gracias a la participación de las flipasas del retículo, se logra el movimiento hacia la monocapa luminal de los lípidos correspondientes, asegurándose de esta forma la asimetría entre ambas capas, que será mantenida de aquí en más.

El REL en las células musculares. El REL actúa como reservorio de calcio, el cual –frente a la llegada de un estímulo - es liberado al citosol, donde dispara una respuesta específica. Esta función es particularmente importante en las células musculares. Allí el REL, que toma el nombre de retículo sarcoplásmico, adopta una conformación muy especializada. El calcio es liberado frente al impulso nervioso desencadenado por la acetil colina en la unión neuromuscular, y una vez en el citosol participa en la contracción muscular. Cuando retorna al REL, por la acción de una bomba de calcio, se produce la miorrelajación.

El REL en las células hepáticas. Está involucrado en dos funciones: detoxificación y glucogenólisis. La detoxificación consiste en la transformación de metabolitos y drogas en compuestos hidrosolubles que puedan ser excretados por orina.


La glucogenólisis (degradación del glucógeno) tiene lugar en el citosol, donde los gránulos de glucógeno se encuentran en íntima relación con el REL. El producto de la glucogenólisis, la glucosa 6-fosfato (glucosa 6-P), es atacada entonces por la glucosa 6-fosfatasa, enzima de la membranas del retículo. Ésta cataliza la hidrólisis del grupo fosfato, permitiendo así que la glucosa atraviese la membrana celular hacia el torrente circulatorio. La glucosa 6-fosfatasa no se expresa en las células musculares, razón por la cual el glucógeno muscular no contribuye a la mantención de la glucemia.

Referencias.
Viviana Sabatino – Andrea Lassalle – Silvia Márquez. Sistema de Endomembranas. Articulo Publicado en: http://genomasur.com/lecturas/Guia05.htm

Ribosomas y síntesis te proteínas.

Se conoce como síntesis de proteínas al proceso por el cual se componen nuevas proteínas a partir de los veinte aminoácidos esenciales. En estre proceso, se transcribe el ADN en ARN. La síntesis de proteínas se realiza en los ribosomas situados en el citoplasma celular.
En el proceso de síntesis, los aminoácidos son transportados por ARN de transferencia correspondiente para cada aminoácido hasta el ARN mensajero donde se unen en la posición adecuada para formar las nuevas proteínas.
Al finalizar la síntesis de una proteína, se libera el ARN mensajero y puede volver a ser leido, incluso antes de que la síntesis de una proteína termine, ya puede comenzar la siguiente, por lo cual, el mismo ARN mensajero puede utilizarse por varios ribosomas al mismo tiempo.
A continuación puedes ver más información sobre en qué consiste el proceso de la síntesis de proteínas, cuales son sus fases y los pasos que se realizan en cada fase de la síntesis de proteínas.
El nucléolo

En el nucléolo tiene lugar la formación de subunidades ribosómicas, la síntesis y procesamiento de ARNr y actualmente se considera que desempeña un importante papel en la regulación del ciclo celular. 
El nucléolo es un aglomerado de fibras de cromatina de distintos cromosomas. En el hombre, los pares 13,14, 15, 21 y 22, aportan sectores de cromatina que forman el nucléolo. Todos estos cromosomas son acrocéntricos y presentan constricciones secundarias denominadas organizadores nucleolares (NOR), donde están los genes que codifican ARNr.



Esquema de nucléolo indicando los bucles de los 10 cromosomas con los genes para el ARNr


Microfotografía electrónica del nucléolo.

El nucléolo aparece como una estructura simple carente de componente membranoso, en la que diferenciamos dos regiones:
·    Una zona fibrilar central, formada por ADNribosómico y ARNr naciente
·    Un zona granular periférica donde los gránulos están formados por las subunidades ribosómicas en proceso de ensamblado (Fig. 10.20).
Los nucléolos, al igual que la envoltura nuclear desaparecen en la mitosis y se reorganizan alrededor de los segmentos de ADNr, que como su nombre lo indica, codifica ARNr. Siendo el ARNr el más abundante dentro de los tipos de ARN, existen múltiples copias del gen que lo codifica. El genoma humano presenta alrededor de 200 copias del gen para ARNr. Estos genes que promedian los 10.000 nucleótidos se localizan en tándem. Cada gen está separado por ADN espaciador y presenta asociado una molécula de ARN polimerasa I. De cada enzima parten perpendicularmente los ARNr nacientes, tomando la apariencia característica de un árbol de navidad. Cada gen produce un transcripto llamado ARNr 45S que será luego procesado (Fig. 10.21)
El tamaño del nucleólo varía entre células y en la misma célula según su actividad, pues si bien la velocidad de transcripción puede acelerarse, el ensamblado de las subunidades ribosomales requiere de un tiempo más o menos constante; es por ello que en los nucléolos grandes observamos mayor proporción de componente granular.

Genes nucleolares (ADNr) durante la transcripción. Observe como la longitud de los transcriptos primarios aumenta a medida que nos alejamos del punto de inicio.


 Ribosomas.

Definición: El ribosoma es un orgánulo pequeño formado por ARNr y proteínas cuya función es colaborar en la traducción, una etapa de la síntesis de proteínas.

El ribosoma está constituido por ARNr y proteínas formando dos subunidades, una pequeña y otra grande, dejando entre ellas dos surcos: uno donde encaja el ARNm y otro por donde sale la cadena polipeptídica recién sintetizada. Se encuentran tanto en bacterias como en eucariotas, diferenciándose en tamaño y número de proteínas. Cada subunidad se ensambla en el núcleo, concretamente en el nucleolo, pero son exportadas separadas al citoplasma donde tras unirse llevan a cabo su función. Aquí pueden encontrarse de forma libre, formando polirribosomas, o asociados a retículo endoplasmático. El ribosoma posee tres sitios de unión: el sitio A, donde se une el aminoacil-tRNA; el sitio P donde se encuentra la cadena naciente; y el sitio E donde se libera el tRNA libre. El ribosoma es la principal diana de antibióticos en la inhibición de la síntesis de proteínas. Hay antibióticos, como los aminoglucósidos (estreptomicina, neomicina ó gentamicina) o nuevos macrólidos como los cetólidos (telitromicina), que se unen a algunas de las subunidades del ribosoma de bacterias interfiriendo en la traducción en algunas de sus etapas, con efecto bactericida. A su vez, los aminoglucósidos inhiben el reciclamiento de los ribosomas al finalizar la traducción. Hay otros antibióticos, como el cloranfenicol y la eritromicina, que se unen a la peptidil-transferasa localizada en la subunidad mayor del ribosoma de bacterias impidiendo su acción de favorecer el enlace peptídico entre el nuevo aminoácido y el fragmento de proteína ya sintetizado produciendo un efecto bacteriostático. Las tetraciclinas presentan también efecto bacteriostático, uniéndose a la subunidad pequeña del ribosoma de bacterias, interfiriendo en una etapa de la traducción. Actualmente se está intentando identificar nuevos antibióticos que interaccionen con la subunidad grande del ribosoma, interfiriendo en su ensamblaje.




ARN RIBOSOMAL (ARNr)
Este tipo de ARN una vez transcripto, pasa al nucleolo donde se une a proteínas. De esta manera se forman las subunidades de los ribosomas. Aproximadamente dos terceras partes de los ribosomas corresponde a sus ARNr.
Fig. 2.49 - Diagrama de un ribosoma procarionte
Fig. 2.49 - Diagrama de un ribosoma procarionte
ARN DE TRANSFERENCIA (ARNt)
Este es el más pequeño de todos, tiene aproximadamente 75 nucleótidos en su cadena, además se pliega adquiriendo lo que se conoce con forma de hoja de trébol plegada. El ARNt se encarga de transportar los aminoácidos libres del citoplasma al lugar de síntesis proteica. En su estructura presenta un triplete de bases complementario de un codón determinado, lo que permitirá al ARNt reconocerlo con exactitud y dejar el aminoácido en el sitio correcto. A este triplete lo llamamos anticodón.


Fig. 2.50- Molécula de ARNt
Molécula de ARNt                                                       ARN PEQUEÑO NUCLEAR (ARNpn o snRNA)

En eucariontes encontramos un grupo de seis ARN que están en el núcleo, el ARN pequeño nuclear, estos desempeñan cierto papel en la maduración del ARNm.

RIBOZIMAS

Son ARN que tienen función catalítica, participan activamente en la maduración de los ARNm.
Función de los ARN
Un gen está compuesto, como hemos visto, por una secuencia lineal de nucleótidos en el ADN, dicha secuencia determina el orden de los aminoácido en las proteínas. Sin embargo el ADN no proporciona directamente de inmediato la información para el ordenamiento de los aminoácidos y su polimerización, sino que lo hace a través de otras moléculas, los ARN. Todo el proceso que se lleva a cabo para la síntesis de proteínas se verá detalladamente en otro capítulo.

Duplicación del ADN
El dogma central de la genética molecular es que la información fluye del ADN al ARN y a través de este a la proteína.

La replicación del ADN es una propiedad esencial del material genético. Es la única molécula capaz de hacer copias idénticas de ella misma y ocurre una vez en cada ciclo celular durante la fase S previa a la mitosis o meiosis, mientras que la transcripción y traducción ocurren repetidamente durante toda la interfase.

La duplicación del ADN es un proceso notablemente rápido, a razón de 50 nucleótidos por segundo. Este proceso comienza cuando unas enzimas conocidas como helicasas rompen uniones entre las bases nitrogenadsa de las dos cadenas de nucleótidos que conforman la molécula de ADN, de esta manera se abre la doble hélice.

Una vez que las dos cadenas se separan, proteínas adicionales, conocidas como proteínas de unión a cadena simple, se unen a las cadenas individuales, manteniéndolas separadas y evitando que se retuerzan. Esto posibilita el siguiente paso, la síntesis real de las nuevas cadenas, catalizadas por enzimas conocidas como ADN polimerasas. Además es necasria otra enzima, la ARN polimerasa. Una vez que se han sintetizados las cadenas nuevas, actua otro grupo de enzimas, las ADN ligasas que une las cadenas.
Como se podrá apreciar en la animación, es un proceso muy complejo.

Transcripción del ADN
Las instrucciones para fabricar una proteína están en la molécula de ADN, pero esta no la puede fabricar, para ello es necesarop el ARN. El ARN se sintetiza a partir de la molécula de ADN mediante el proceso conocido como transcripción.
La transcripción comienza cuando la la enzima ARN polimerasa, toma contacto con el ADN y lo abre y, a medida que la enzima se mueve a lo largo de la molécula de ADN, se separan las dos cadenas de la molécula. Los nucleótidos que constituyen los bloques estructurales, se ensamblan en el ARN, siendo esta última cadena complementaria a la del ADN que tomo como molde (Fig. 3)
Fig. 3: Transcrición del ADN a ARNm.
La molécula de ARNm formada abandona el núcleo y se dirige hacia los ribosomas que se hallan en el citoplasma libres o adheridos al retículo endoplasmático.

Traducción
La traducción ocurre en varias etapas:
Primero está la iniciación. Esta comienza cuando la molécula de ARNm se une a la subunidad ribosómica más pequeña. La primera molécula de ARNt, que lleva el aminoácido se acopla con el codón iniciador AUG de la molécula de ARNm. Luego se acopla la subunidad ribosómica más grande. Un segundo ARNt, con su aminoácido unido, se coloca en el sitio A y su anticodón se acopla con el ARNm. Se forma un enlace peptídico entre los dos aminoácidos reunidos en el ribosoma. Al mismo tiempo, se rompe el enlace entre el primer aminoácido y su ARNt (Fig. 4).
Fig. 4: Iniciación
El ribosoma se mueve a lo largo de la cadena de ARNm en una dirección 5' a 3', y el segundo ARNt, con el dipéptido unido, se mueve desde el sitio A al sitio P, a medida que el primer ARNt se desprende del ribosoma.
Un tercer ARNt se coloca en el sitio A y se forma otro enlace peptídico. La cadena peptídica naciente siempre está unida al ARNt que se está moviendo del sitio A al sitio P y el ARNt entrante que lleva el siguiente aminoácido siempre ocupa el sitio A. Este paso se repite una y otra vez hasta que se completa el polipéptido. A esta parte del proceso se la llama elongación (Fig. 5).
Fig. 5: Elongación.

Cuando el ribosoma alcanza un codón de terminación (ver código genético)(en este ejemplo UGA), el polipéptido se escinde del último ARNt y el ARNt se desprende del sitio P. El sitio A es ocupado por un factor de liberación que produce la disociación de las dos subunidades del ribosoma. A este proceso se lo llama terminación (Fig. 6).
Fig. 6: Terminación.

En el siguiente video se pueden apreciar las estapas antes mencionadas



Referencias.
Julio Soza , Adriana M. (2008) Sintesis de Proteínas. Articulo Publicado en: http://proteinas.org.es/sintesis-proteinas

Cortez Maria (11-11-2007) Ribosoma. Articulo Publicado en: http://medmol.es/glosario/37/

Lopez Tenue J. Sintesis de proteínas: Traducción. Articulo Publicado en: http://www.uam.es/personal_pdi/ciencias/erichard/biofisica/teoria/traduccion.pdf 

silvia Márquez- Sergio Daniel Ifrán- Enrique Zabala. Ciclo celular y duplicación del ADN. Articulo publicado en: http://genomasur.com/lecturas/Guia12a.htm

Estructura Nuclear y función.

NUCLEO


El núcleo es la estructura más destacada de la célula eucarionte, tanto por su morfología como por sus funciones. Su tamaño es variable (5 a 10 mm) al igual que su ubicación siendo en la mayoría de los tipos celulares central.
El núcleo tiene tres funciones primarias, todas ellas relacionadas con su contenido de ADN. Ellas son:

1.  Almacenar la información genética en el ADN.
2.  Recuperar la información almacenada en el ADN en la forma de ARN.
3.  Ejecutar, dirigir y regular las actividades citoplasmáticas, a través del producto de la expresión de los genes: las proteínas.

En el núcleo se localizan los procesos a través de lo cuales se llevan a cabo dichas funciones. Estos procesos son:
1.  La duplicación del ADN y su ensamblado con proteínas (histonas) para formar la cromatina.
2.  La transcripción de los genes a ARN y el procesamiento de éstos a sus formas maduras, muchas de las cuales son transportadas al citoplasma para su traducción y
3. La regulación de la expresión genética.

ESTRUCTURA DEL NÚCLEO



El núcleo está rodeado por la envoltura nuclear, una doble membrana interrumpida por numerosos poros nucleares. Los poros actúan como una compuerta selectiva a través de la cual ciertas proteínas ingresan desde el citoplasma, como también permiten la salida de los distintos ARN y sus proteínas asociadas.
La envoltura nuclear es sostenida desde el exterior por una red de filamentos intermedios dependientes del citoesqueleto, mientras que la lámina nuclear, la cual se localiza adyacente a la superficie interna de la envoltura nuclear, provee soporte interno.
El núcleo también tiene un nucleoplasma, en el cual están disueltos sus solutos y un esqueleto filamentoso, la matriz nuclear la cual provee soporte a los cromosomas y a los grandes complejos proteicos que intervienen en la replicación y transcripción del ADN.

Los cromosomas aparecen ocupando lugares específicos. Los genes que codifican productos relacionados, aunque estén localizados en diferentes cromosomas, pueden estar ubicados próximos en el núcleo interfásico.  Por ejemplo, los cromosomas humanos 13, 14, 15, 21 y 22 poseen un gran número de genes que codifican para ARNr. Dichos cromosomas están agrupados de tal forma que los genes de los ARNr están todos juntos y confinados en el nucléolo, el lugar donde se sintetizan, procesan y ensamblan los ARNr. Esta separación física asegura que los ARNr puedan ser eficientemente ensamblados dentro de las subunidades ribosomales.

En el núcleo, los genes transcripcionalmente activos tienden a estar separados de los inactivos. Los activos se encuentran ubicados centralmente, mientras que los silentes están confinados próximos a la envoltura nuclear.

Tan pronto como las células entran en mitosis o meiosis, los fragmentos de la matriz nuclear dirigen la condensación de los cromosomas, constituyéndose en la parte central de los mismos.

IMPORTACIÓN DE PROTEÍNAS
Las importinas son heterodímeros, formados por dos subunidades, la subunidad-a se une a la NSL de la proteína nuclear permitiendo la unión con la subunidadad-b. Esta unión origina una “importina funcional” que lleva unida a la proteína nuclear a ser transportada.

El complejo importina funcional se pone en contacto con los filamentos citosólicos, donde guiado por las nucleoporinas (Nup), llega al poro central. La translocación de complejo importina/carga es regulado por la pequeña RanGTPasa [1] , que se une a la subunidad b de la importina. Esta b-importina es la encargada de interactuar con el poro provocando su dilatación y posibilitando el ingreso de la proteína nuclear. La translocación de proteínas es un proceso activo. 
Cuando el complejo penetra al interior del núcleo, las subunidades de importina se separan y la carga es liberada. La disociación de las subunidades causa entonces un nuevo cambio en su forma, dejando al descubierto la NES de cada subunidad. Otras proteínas en el poro central reconocen la NES y retornan las subunidades al citoplasma.

EXPORTACIÓN DE ARN

Los ARN maduros se asocian a proteínas llamadas transportinas, las cuales actúan como transbordadores permitiendo el pasaje de ARN al citoplasma. En la fig. 10.6 se esquematiza como el ARNm es llevado fuera del núcleo. Los ARNm maduros que presentan la poli A se asocian con varias proteínas, formando una partícula de ribonucleoproteína (RNP). Estas partículas se mueven linealmente a través de la canasta nuclear. Al igual que las importinas, las RNP son recicladas hacia el núcleo. En el citoplasma, las CRBP ( del inglés, cytoplasmic RNA-binding proteins) reemplazan a las RNP para guiar a los ARNs a sus destinos citosólicos correctos.


CROMOSOMAS Y CROMATINA




El núcleo contiene los cromosomas de la célula. Cada cromosoma consiste en una molécula única de ADN con una cantidad equivalente de proteínas. Colectivamente, el ADN con sus proteínas asociadas se denomina cromatina. La mayor parte de las proteínas de la cromatina consisten en copias múltiples de cinco clases de histonas.
Estas proteínas básicas son ricas en residuos de arginina y lisina cargados positivamente. Por esta razón se unen estrechamente con los grupos fosfatos (cargados negativamente) del ADN.
La cromatina también contiene pequeñas cantidades de una amplia variedad de proteínas no histónicas y RNP. La mayoría de ellas son factores de transcripción (por ej., el receptor esteroide), siendo su asociación con el ADN pasajera. Estos factores regulan que parte del ADN será transcripta en ARN.

COMPLEJOS DE PORO NUCLEAR

La envoltura nuclear presenta estructuras discoidales llamadas complejos de poro nuclear (CPN)
El número de CPN es variable, incrementándose a medida que aumenta la actividad celular. En una célula de mamífero hay entre 3000 a 4000 complejos de poro. Cada CPN es una estructura macromolecular compleja constituida por un gran número de proteínas de disposición octamérica. Está formado por:
·    Ocho columnas proteicas, que forman las paredes laterales del poro.
·    Un anillo externo, formado por ocho unidades proteicas.
·    Un anillo interno, también con estructura octamérica.
·    Proteínas de anclaje que fijan cada columna al espacio perinuclear.
·    Proteínas radiales que se proyectan desde las columnas hacia la luz del poro, a manera de diafragma
·    Proteínas fibrilares fijas al anillo interno y externo. En la cara nuclear convergen para formar una canastilla o cesta. A lo largo de estas fibrillas se ubican nucleoporinas que intervienen en el transporte de sustancias a través del poro.

Referencias.
Silvia Márquez- Andrea Lassalle- Viviana Sabbatino- Gladys Gálvez El Núcleo Celular . Articulo publicado enhttp://genomasur.com/lecturas/Guia10.htm

COMUNICACIÓN INTERCELULAR Y TRANSMISIÓN DE SEÑALES

La mayoría de las actividades celulares, solo se desarrollan, si las células involucradas son alcanzadas por estímulos provenientes de otras. Para coordinar todas estas diversas funciones deben existir mecanismos de comunicación intercelular.
Cuando una célula recibe un estímulo puede responder con alguno de los siguientes cambios, dependiendo de las características del estímulo y el tipo de célula receptora del mismo: por ejemplo, se puede diferenciar, reproducir, incorporar o degradar nutrientes, sintetizar, secretar o almacenar distintas sustancias, contraerse, propagar señales o morir.

Inducción
En la mayoría de los organismos superiores existen dos métodos fundamentales de comunicación intercelular: un sistema fundado en las neuronas o células nerviosas y otro basado en las hormonas. En ambos sistemas las células se comunican entre si a través de mensajeros químicos.
Las neuronas envían mensajes a sus células efectoras (células blanco), que pueden ser células musculares, células glandulares u otras neuronas. Para enviar su mensaje, la neurona libera una sustancia química, un neurotransmisor. El neurotransmisor es liberado en sitios específicos llamados sinapsis. Las moléculas de neurotransmisor se unen a receptores, situados en la superficie de la célula blanco, y provocan de esta forma cambios físicos y químicos en la membrana celular y en el interior celular.

Por lo tanto diremos que en general, la acción de estimular a las células desde el exterior se llama inducción y se realiza a través de sustancias producidas por células inductoras. La célula que es sensible al inductor se denomina célula inducida, blanco o diana y presenta para el mismo receptores específicos , que pueden ubicarse en la membrana plasmática, el citoplasma o en el núcleo. Estos receptores son proteínas o complejos proteicos.

Efecto de un mismo inductor sobre diferentes células blanco. Un inductor puede tener varios receptores, causando distintas respuestas celulares

La acción de las hormonas, puede darse básicamente de acuerdo a uno de estos cinco tipos de inducción:
1.        Endocrina: una glándula libera hormonas (inductor) que pueden actuar sobre células u órganos situados en cualquier lugar del cuerpo (células blanco). Por lo tanto podemos decir que células inductoras e inducidas se encuentran distantes.
2.       Paracrina: Una célula o un grupo de ellas liberan una hormona que actúa sobre las células adyacente que presenten el receptor adecuado. De esta forma la célula inductora e inducida se encuentran próximas. Ej. Prostaglandinas
3.       Autocrina: Una célula libera una hormona que actúa sobre la misma célula. Ej. prostaglandinas
4.       Neuroendocrina: Una neurona libera su neurosecreción al torrente sanguíneo. Ej. Oxitocina, ADH, hormonas liberadoras e inhibidoras hipotalámicas
5.       Por contacto directo: La hormona o molécula inductora es retenida en la membrana plasmática de la célula inductora, por lo tanto no se secreta. Las células deben ponerse en contacto, para que la sustancia inductora tome contacto con el receptor localizado en la membrana plasmática de la célula inducida.
6.       Yuxtacrina ( a través de uniones comunicantes, nexus o gap: Las células conectadas a través del establecimiento de este tipo de uniones firmes, puede responder de forma coordinada ante un inductor que se une a alguna de las células que están comunicadas. A través de estas uniones pasan pequeñas moléculas como los segundos mensajeros.


Algunas formas de inducción por moléculas secretadas


Las moléculas pueden actuar como hormonas y están pueden clasificarse de acuerdo a su estructura química en cuatro categorías:

1. Esteroides: Las hormonas esteroides son derivados del colesterol. Ejemplos de las hormonas esteroides son los glucocorticoides, los mineralocorticoides, los esteroides sexuales, la vitamina D y el ácido retinoico.

2. Derivados de aminoácidos: hormonas derivadas del aminoácido tirosina. Conocidas como aminohormonas. Existen dos tipos de aminohormonas las que interactúan con receptores de membrana  y las que se unen a receptores citosólicos.

3. Péptidos o proteínas: Son cadenas de aminoácidos. Ejemplos de hormonas peptídicas son la oxitocina y la hormona antidiurética

4. Derivados de ácidos grasos: Las prostaglandinas y las hormonas juveniles de los insectos son hormonas derivadas de ácidos grasos.

Los receptores de membrana detectan la llegada de una hormona y activan una ruta de transmisión de señales intracelular, que en ultima instancia regula los procesos celulares.
 En la membrana plasmática se alojan mecanismos que transducen las señales externas, en otras internas, responsables últimos de la regulación de las funciones celulares. En general vamos a denominar a las señales externas (hormonas), como primeros mensajeros, y a las señales internas como segundos mensajeros. El proceso de generar los segundos mensajeros, depende de una serie de proteínas de la membrana celular. Los segundos mensajeros son en general moléculas de pequeño tamaño, cuya rápida difusión permite que la señal se propague rápidamente por todo el interior celular.

BASE MOLECULAR DE LA COMUNICACIÓN INTRACELULAR

Inducciones celulares mediadas por receptores de membrana asociados a proteínas G
Podemos decir que las rutas de transmisión de información intracelular comparten una secuencia de procesos. Los mensajeros externos (primer mensajero), se unen a lasmoléculas receptoras que activan a las proteínas transductoras asociadas al receptor. Estas proteínas una vez activadas, transportan señales a través de la membrana a las enzimas amplificadoras, que generan las señales internas transportadas por los segundos mensajeros.
En este caso de inducción, el receptor de membrana, transmite la información a través de la membrana plasmática, hacia el interior de la célula, por medio de una proteína transductora, la proteína G

Existen dos tipos de Proteínas G, las proteínas G estimuladoras (Gs y Gq) y las proteínas G inhibitorias (Gi)

La Proteína Gs (s, stimulatory G protein) unida a GTP activa a la AC (adenilato ciclasa) aumentando la cantidad de AMPc en el interior celular.

La proteína Gi (i, inhibitory G protein) unida a GTP inactiva a la adenilato ciclasa, disminuyendo indirectamente la cantidad de AMPc intracelular.

La proteína Gq unida a GTP activa a la fosfolipasa C, aumentando la cantidad de DAG, IP3 y Ca++ intracelular.


Activación de la proteinaquinasa A dependiente de AMPc

El AMPc regula la actividad de la proteinquinasa A (PKA)
La activación de la AC (adenilato ciclasa) por una proteína Gs aumenta la concentración de AMPc en el citosol. Este AMPc puede unirse a un sitio regulador de una proteinquinasa especifica denominada proteinquinasa A (PKA). Toda proteinquinasa A consta de dos subunidades una catalítica y otra regulatoria. La unión del AMPc a la subunidad regulatoria, provoca la activación de la PKA y la liberación de las subunidades catalíticas activas. Esta proteinquinasa inicia una cascada de fosforilaciones que determinan las respuestas celulares especificas de cada tipo celular.

Inducciones en las que participan receptores de membrana con actividad enzimática
Los receptores de membrana con actividad enzimática, poseen en general tres dominios:
·         Un dominio extracelular (extracitoplasmático), que une al primer mensajero (ligando)
·         Un dominio transmembrana
·         Un dominio intracelular (citoplasmático), con actividad enzimática.


Esquema de un receptor tirosinquinasa (RTK) de la insulina

El receptor de insulina
Entre los RTK mas importantes encontramos al receptor de insulina. Recordemos que la insulina cumple múltiples funciones, es hipoglucemiante es decir que permite la entrada de glucosa a los tejidos insulinodependientes, disminuyendo de esta forma la cantidad de glucosa en sangre. Es un potente estimulante de la síntesis de lípidos en las células adiposas. También potencia la síntesis proteica y estimula el crecimiento y la división de todas las células del organismo.
Como vimos anteriormente el receptor de insulina se autofosforila en el aminoácido tirosina y fosforila también a otras proteínas que se asocian a él del lado citoplasmático. Estos sitios fosfotirosina sirven de enganche a proteínas que poseen dominios llamados SH2. La interacción de estas proteínas que poseen dominios SH2 y el receptor de insulina puede activar diferentes respuestas dependiendo de la proteína en particular. Si se trata de una molécula con actividad enzimática puede activarse, en cambio si se trata de una molécula adaptadora puede activar otras proteínas que se unen a ella.
La estructura del receptor de insulina es tetramérica. Dos subunidades alfa y dos subunidades beta. Las subunidades alfa unen la insulina y las subunidades beta, atraviesan la membrana y poseen la actividad tirosinquinasa.

Otros receptores con actividad tirosinquinasa

Entre otros RTKs podemos nombrar a los receptores del factor de crecimiento epidérmico (EGF) y el factor de crecimiento derivado de plaquetas (PDGF). Estos receptores a diferencia del receptor de insulina son monoméricos, mientras no están unidos al inductor. Cuando se activan, por unión del ligando, interactúan entre si para formar dímeros. La dimerización activa la función tirosinquinasa y la siguiente autofosforilación del receptor.



Activación de la proteína Ras
Proteina Ras

La proteína Ras es una pequeña proteína G citosólica. Es monomérica a diferencia de la proteína G de membrana que es trimérica. Al igual que otra proteínas G, tiene actividad GTPasa y por lo tanto muestra ciclos activos (unidos al GTP) e inactivos (unidos al GDP).

Esta proteína cumple un rol fundamental en varias vías de señalización internas. Una de las más importantes vías en la que interviene Ras es la cascada de proteinquinasa activada por mitógeno (MAPK). En esta vía un mitógeno (insulina, algún factor de crecimiento), activa a su RTK que se autofosforila, esto crea sitios fosfotirosina que actúan de anclaje para proteínas que poseen dominios SH2. En este caso se une al receptor, un complejo adaptador cuya función es activar a la proteína Ras. La proteína Ras activada (Ras-GTP), estimula a su vez a una tirosinquinasa llamada Raf que inicia una cadena de fosforilaciones, que culmina con la activación de genes que están involucrados en la síntesis de ADN y en la activación de la división celular.

Referencias.

Silvia Márquez – Lionel Valenzuela Pérez – Sergio D. Ifrán – Maria Elena Pinto – Gladys Gálvez Comunicación intracelular y transmisión de señales Articulo  publicado en http://genomasur.com/lecturas/Guia07.htm